Multi-physics treatment in the vicinity of arbitrarily deformable gas-liquid interfaces

نویسندگان

  • Petar Liovic
  • Djamel Lakehal
چکیده

A novel three-dimensional problem formulation is introduced for the simulation of turbulent interfacial multi-fluid flows. The strategy is built around the large eddy simulation (LES) concept, and can be employed for interfacial heat and mass transfer problems in which use can be made of either scalar transfer correlations, or exact mass/energy jump conditions. This multi-physics treatment capability at arbitrarily deformable interfaces translates into two main features: (i) a reconstructed distance function (RDF) is introduced to define a level-set interface-normal length scale, and (ii) an interfacial shear velocity is defined on the distance function support for further use in near-interface transport models. The solution algorithm uses VOF with piecewise planar interface reconstructions on a twice-as-fine mesh, and infers the convective mass fluxes from the interface solution to promote momentum conservation. The interfacial shear velocity defined on the distance function support is introduced to accommodate the asymptotic behaviour of turbulence approaching the interface in a proximity-dependent manner. Provided with highly accurate distance function data, the scheme generates near-interface damping functions that are second-order accurate and independent of interface orientation. The damping was found to be affected by errors introduced into shear velocity estimates by the high-frequency errors in the RDF scheme near the interface. The methodology has been applied for the simulation of a wave breaking scenario featuring multiple modes and interfacial length scales. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wettability of Liquid Mixtures on Porous Silica and Black Soot Layers

Sophisticated manipulation of surface roughness and solid surface energy are widely used to design super-hydrophobic layers. In this work, we designed highly porous silica layer with contact angle (CA) of 145°, and its robustness was promoted with thermal treatment. Wettability of coated layer is studied with CA measurement for different liquid surface tensions using diluted organi...

متن کامل

Rn- 222 Concentration and Gamma Dose Rate Measurements in the Vicinity of Hot Springs in Kerman Province, Southeastern, Iran.

Introduction: Radon-222 gas is a radioactive, colorless and odorless element that can cause lung cancer and stomach in humans with alpha-ray emissions. An important source of Radon-222 is the output water in springs, especially hot springs to emit ionision radiation. In this study, Rn-222 activity concentration and gamma dose rate levels in water sample of some selected hot spr...

متن کامل

Evaluation of deformable image registration in HDR gynecological brachytherapy

Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...

متن کامل

Electrochemical Sensing of H2S Gas in Air by Carboxylated Multi-walled Carbon Nanotubes

The electrochemical sensor for detecting hydrogen sulfide was fabricated. H2S gas molecules pass through polytetrafluoroethylene membrane with 0.22 mm pore size. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to fabricate working and counter electrodes. It can be seen from Field Emission Scanning Electron Microscopy (FESEM) images of the working electrode that...

متن کامل

Numerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells

A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 222  شماره 

صفحات  -

تاریخ انتشار 2007